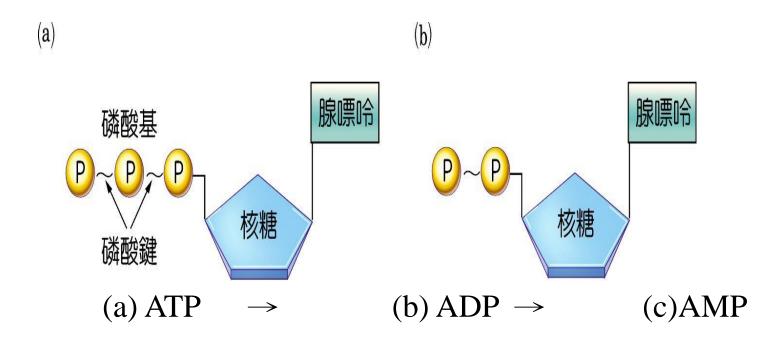
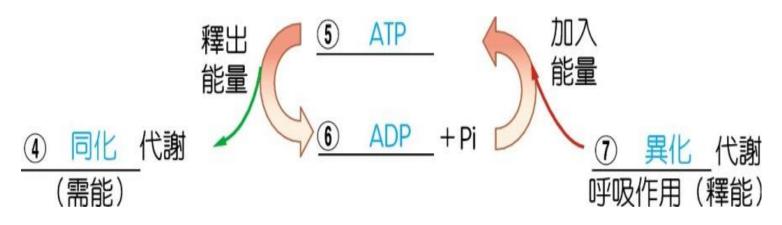
1-4 細胞與能量


ATP

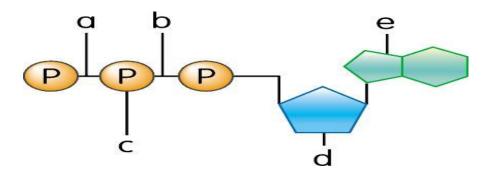
中文名稱: 腺嘌呤核苷三磷酸(腺苷三磷酸)


組成:由腺嘌呤、核糖和 3 個磷酸基組成,

分子內兩個磷酸基間的化學鍵稱為磷酸鍵,

共含2個磷酸鍵。是一種核苷酸。

功能:細胞中能量的主要攜帶者,有能量貨幣之稱。

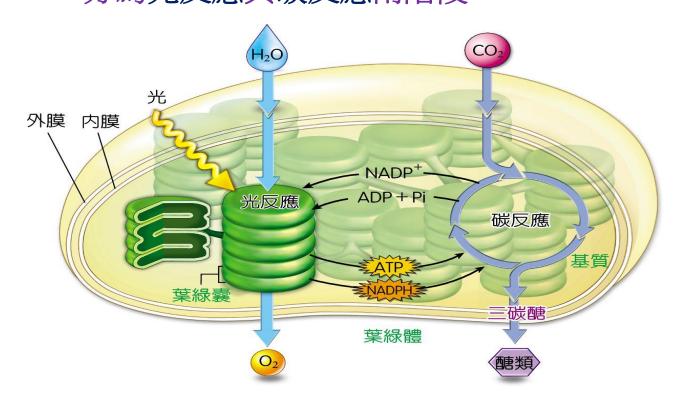

細胞代謝與 ATP/ADP 的循環變化

ATP 含量比例可反應細胞內的能量狀況

ATP / ADP	細胞能	細胞釋能反應	細胞需能反
比值	量狀況	(氧化、異化)	應(同化)
昌	能量 充足	抑制	促進
低	能量較少	促進	抑制

例如:下圖為 ATP 的構造模式圖,

有關 ATP 的敘述,何者正確? (應選2項)



- (A) d 為去氧核糖
- (B) e 為腺嘌呤
- (C) ATP → ADP+Pi 的反應式中, 磷酸鍵 b 被打斷
- (D)一個 ATP 分子僅有一個磷酸鍵
- (E) ATP 也是一種核苷酸

答案:BE

光合作用

場所:葉綠體(真核細胞進行光合作用處); 分為光反應與碳反應兩階段。

光反應:

① 主要場所:葉綠體的類囊體。

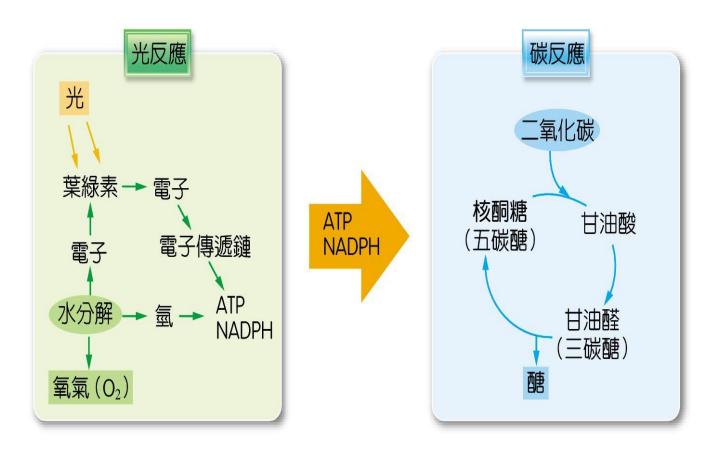
2 過程:

主要色素:葉綠素a吸收光能。

輔助色素:葉綠素 b、葉黃素(天線色素)、

胡蘿蔔素,

協助吸收光能傳給葉綠素 a。


- ※ 光能轉換為儲存於 ATP、NADPH 的化學能。
- ※ 水分子分解,產生 氧。
- ※ ATP 和 NADPH 的化學能可供碳反應使用。

碳反應:

- ① 場所:葉綠體的基質。
- 2 過程:
- ※利用光反應的 ATP 和 NADPH 之化學能。
- ※在基質中多種酵素的催化下,將 CO₂ 合成醣類。 光合作用的總反應式:

$$6CO_2 + 12H_2O \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$$

光合作用的過程

光反應與碳反應的比較

	光反應	碳反應	
進行場所	類囊體	基質	
	光能 → 化學能	利用化學能 ATP、	
主要功能	ATP · NADPH	$NADPH$ → 將 CO_2	
		合成醣類	
參與物質	葉綠素、水、	CO ₂ · ATP · NADPH	
	ADP · NADP ⁺		
能量來源	光照	ATP · NADPH	

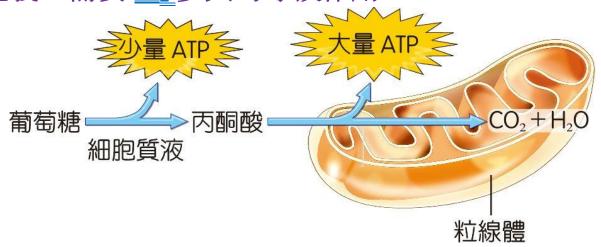
影響光合作用的因子

生物因素:植物本身的光合作用能力,

例如:葉片大小、葉綠體含量多寡、氣孔密度。 **非生物因素**:

- 1.光照:特定波長範圍,光照愈強,光反應速率愈快; 光照太強,會使光合作用受阻。
- 2.溫度:影響酵素的作用,進而影響光合作用的速率。
- 3.土壤中含水量:為光合作用的原料;

水的多寡影響**氣孔開閉**,間接影響二氧化碳、 氧等氣體進出。


- 4.空氣中 CO₂ 濃度:光合作用碳反應的原料; 濃度高時光合作用速率高。
- 5.土壤中氦、鉀、等無機鹽影響植物生長與**酵素的活性**, 再影響光合作用進行。

呼吸作用

- 1. 定義:細胞將單醣、胺基酸和脂肪酸等物質分解, 並產生能量的過程。
- 2. 釋出能量將 ADP 轉變為 ATP 。
- 3. 方式:有氧呼吸作用及發酵作用。
- 4. 場所:可發生於細胞質液中或細胞質液與粒線體中。

有氧呼吸:

定義:需要 O_2 參與的呼吸作用。

比較糖解作用及其他階段的差異

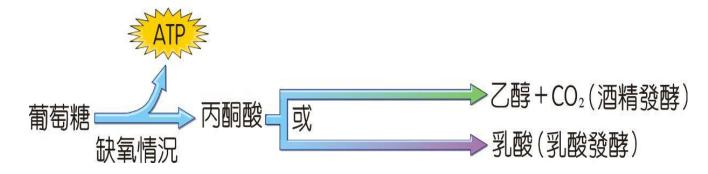
	第一階段:糖解作用	其他階段:	
	年間段・個件11月	丙酮酸氧化及電子傳遞鏈	
場所	細胞質液	粒線體	
主要原料葡萄糖、ADP、Pi		丙酮酸、ADP、Pi	
產物	丙酮酸、少量 ATP	CO ₂ 、H ₂ O、大量 ATP	
反應式	葡萄糖→	丙酮酸 $+O_2 \rightarrow$	
汉恶式	丙酮酸+2ATP	$CO_2 + H_2O + 34ATP$	
O_2	×	√	

發酵作用:

1.場所:細胞質液。

2.步驟:

糖解作用:葡萄糖→丙酮酸+2ATP。


丙酮酸代謝:依產物分為 2 種。

※ 酒精發酵:丙酮酸→乙醇 $+CO_2$ 。

 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 + 2ATP$

※乳酸發酵:丙酮酸→乳酸。

乳酸發酵: $C_6H_{12}O_6 \rightarrow 2C_2H_4OHCOOH + 2ATP$ 。

呼吸作用及發酵作用比較

		有氧呼吸作用	酒精發酵	乳酸發酵
O_2	參與	V	×	×
原	料	葡萄糖	葡萄糖	葡萄糖
產物	4 / /m	$CO_2 \cdot H_2O \cdot ATP$	酒精、CO ₂ 、	乳酸、
	127		ATP	ATP
ATP		大量	少量	少量
	所	一般細胞	酵母菌、植物	乳酸菌、骨骼
場		細胞質液、	根細胞(缺 02)	肌細胞(缺 O2)
		粒線體	細胞質液	細胞質液

影響呼吸作用的因子:

- 1. 氧:氧是有氧呼吸所需,其濃度會影響呼吸作用速率。
- 2. 溫度: 呼吸作用過程需要許多酵素參與, 而溫度會影響酵素的活動。
- 3. 植物年龄:嫩葉、幼芽>成熟的葉片或莖枝。
- 4. 組織種類:分生組織>成熟的組織。
- 5. 細胞狀態: 萌芽的種子>休眠的種子。